Search results for " time series"

showing 10 items of 75 documents

Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring

2020

Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologiesImage processing02 engineering and technologycomputer.software_genre01 natural scienceslcsh:AgricultureKrigingTime series021101 geological & geomatics engineering0105 earth and related environmental sciences2. Zero hungerHyperparameterPixelSeries (mathematics)lcsh:SGaussian processes regressionSatellite Image Time SeriesData miningtime seriesSentinel-2optimizationAgronomy and Crop Sciencecomputercrop monitoringphenology indicatorsAgronomy
researchProduct

A multisensor fusion approach to improve LAI time series

2011

International audience; High-quality and gap-free satellite time series are required for reliable terrestrial monitoring. Moderate resolution sensors provide continuous observations at global scale for monitoring spatial and temporal variations of land surface characteristics. However, the full potential of remote sensing systems is often hampered by poor quality or missing data caused by clouds, aerosols, snow cover, algorithms and instrumentation problems. A multisensor fusion approach is here proposed to improve the spatio-temporal continuity, consistency and accuracy of current satellite products. It is based on the use of neural networks, gap filling and temporal smoothing techniques. …

010504 meteorology & atmospheric sciencesMeteorologytélédétectionsatellite0211 other engineering and technologiesSoil Scienceréseau neuronal02 engineering and technology01 natural sciencessuivi de culturesInstrumentation (computer programming)Computers in Earth SciencesLeaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingVegetationGeologyVegetationData fusionLAI time seriesSensor fusionMissing dataLAI time series;Vegetation;Modis;Temporal smoothing;Gap filling;Data fusionqualité des données13. Climate actionAutre (Sciences de l'ingénieur)Gap filling[SDE]Environmental SciencesEnvironmental scienceSatelliteModisTemporal smoothingScale (map)Smoothing
researchProduct

Identification and visualization of differential isoform expression in RNA-seq time series

2018

Abstract Motivation As sequencing technologies improve their capacity to detect distinct transcripts of the same gene and to address complex experimental designs such as longitudinal studies, there is a need to develop statistical methods for the analysis of isoform expression changes in time series data. Results Iso-maSigPro is a new functionality of the R package maSigPro for transcriptomics time series data analysis. Iso-maSigPro identifies genes with a differential isoform usage across time. The package also includes new clustering and visualization functions that allow grouping of genes with similar expression patterns at the isoform level, as well as those genes with a shift in major …

0301 basic medicineStatistics and ProbabilityGene isoformIdentificationComputer scienceSequence analysisGene ExpressionRNA-SeqComputational biologyBiochemistryBioconductorTranscriptomeMice03 medical and health sciences0302 clinical medicineEstadística e Investigación OperativaRNA IsoformsAnimalsMolecular BiologyGeneVisualizationRegulation of gene expressionB-LymphocytesSequence Analysis RNAGene Expression ProfilingCell DifferentiationApplications NotesComputer Science ApplicationsVisualizationComputational Mathematics030104 developmental biologyGene Expression RegulationComputational Theory and MathematicsRNA-seq time seriesSoftware030217 neurology & neurosurgeryIsoform expression
researchProduct

Effect of a distal weight-bearing implant on visual analog scale scores in 23 transfemoral amputees.

2018

The objective of this interrupted time series clinical trial was to evaluate the effect of a distal weight-bearing implant on well-being in patients with transfemoral amputations using the visual analog scale (VAS). A total of 29 patients from five hospitals with previous transfemoral amputations were surgically implanted with an osseoanchored implant with a distal spacer that allows a direct load on the residuum over the distal surface of the socket. Patients were followed for a 14-month period and assessed presurgically and postsurgically using the VAS. The Wilcoxon test was used to evaluate the differences between variables. VAS mean scores improved significantly after intervention. Sign…

AdultMaleAdolescentVisual Analog ScaleVisual analogue scaleDentistryPhysical Therapy Sports Therapy and RehabilitationArtificial Limbsmedicine.disease_causeProsthesis DesignWeight-bearingWeight-Bearing03 medical and health sciencesYoung Adult0302 clinical medicineAmputeesmedicineHumansIn patientVas scoreAged030203 arthritis & rheumatologyAged 80 and overbusiness.industryRehabilitationInterrupted time seriesMiddle AgedFemaleImplantbusiness030217 neurology & neurosurgeryInternational journal of rehabilitation research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue internationale de recherches de readaptation
researchProduct

An Information-Theoretic Framework to Map the Spatiotemporal Dynamics of the Scalp Electroencephalogram

2016

We present the first application of the emerging framework of information dynamics to the characterization of the electroencephalography (EEG) activity. The framework provides entropy-based measures of information storage (self entropy, SE) and information transfer (joint transfer entropy (TE) and partial TE), which are applied here to detect complex dynamics of individual EEG sensors and causal interactions between different sensors. The measures are implemented according to a model-free and fully multivariate formulation of the framework, allowing the detection of nonlinear dynamics and direct links. Moreover, to deal with the issue of volume conduction, a compensation for instantaneous e…

AdultMaleInformation transferEntropyComputation0206 medical engineeringInformation TheoryBiomedical Engineering02 engineering and technologyScalp electroencephalogramElectroencephalographyMachine learningcomputer.software_genreEEG propagationYoung Adult03 medical and health sciences0302 clinical medicinevolume conductionmedicineHumansCausal connectivitytransfer entropy (TE)MathematicsBrain MappingScalpmedicine.diagnostic_testbusiness.industryBrainElectroencephalographySignal Processing Computer-AssistedPattern recognitioncomplex dynamic020601 biomedical engineeringmultivariate time series analysiComplex dynamicsNonlinear systemSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaFemaleentropy estimationTransfer entropyArtificial intelligenceInformation dynamicsbusinesscomputer030217 neurology & neurosurgeryIEEE Transactions on Biomedical Engineering
researchProduct

Exploiting deep learning algorithms and satellite image time series for deforestation prediction

2022

In recent years, we have witnessed the emergence of Deep Learning (DL) methods, which have led to enormous progress in various fields such as automotive driving, computer vision, medicine, finances, and remote sensing data analysis. The success of these machine learning methods is due to the ever-increasing availability of large amounts of information and the computational power of computers. In the field of remote sensing, we now have considerable volumes of satellite images thanks to the large number of Earth Observation (EO) satellites orbiting the planet. With the revisit time of satellites over an area becoming shorter and shorter, it will probably soon be possible to obtain daily imag…

Artificial intelligenceDeforestation predictionRéseaux de neurones récurrentsApprentissage profondRecurrent neural networks[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingImage time seriesDeep learningSatellite imagesSéries temporelles d'imagesIntelligence artificiellePrédiction déforestationImages satellitaires
researchProduct

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct

Comparative study of three satellite image time-series decomposition methods for vegetation change detection

2018

International audience; Satellite image time-series (SITS) methods have contributed notably to detection of global change over the last decades, for instance by tracking vegetation changes. Compared with multi-temporal change detection methods, temporally highly resolved SITS methods provide more information in a single analysis, for instance on the type and consistency of change. In particular, SITS decomposition methods show a great potential in extracting various components from non-stationary time series, which allows for an improved interpretation of the temporal variability. Even though many case studies have applied SITS decomposition methods, a systematic comparison of common algori…

Atmospheric ScienceNon-stationary010504 meteorology & atmospheric sciencesBFASTSTL0211 other engineering and technologiesMRA-WT02 engineering and technology01 natural sciencesNormalized Difference Vegetation Indexlcsh:OceanographyDecomposition (computer science)medicineSatellite imagerylcsh:GC1-1581Computers in Earth SciencesNDVI time series021101 geological & geomatics engineering0105 earth and related environmental sciencesGeneral Environmental ScienceRemote sensingApplied Mathematicslcsh:QE1-996.5Global change15. Life on landSeasonalitymedicine.diseaselcsh:GeologyEnvironmental scienceChange detectionSatellite Image Time Seriesmedicine.symptomVegetation (pathology)[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingChange detection
researchProduct

Estimation of the time lag occurring between vegetation indices and aridity indices in a Sicilian semi-arid catchment

2009

The evolution of drought phenomena in a Sicilian semi-arid catchment has been analyzed processing both remote sensing images and climatic data for the period 1985-2000. The remote sensing dataset includes Landsat TM and ETM+ multispectral images, while the climatic dataset includes monthly rainfall and air temperature. The results have been specifically discussed for areas where it is possible to neglect agricultural activities and vegetation growth is only influenced by natural forcing. The main outcome of this study is the quantification of the time lag between the remote sensing retrieved vegetation indices and the aridity indices (AIs) calculated from climatic data. Moreover the obtaine…

Atmospheric Sciencegeography.geographical_feature_categoryvegetation indices aridity indices drought time series time lagApplied MathematicsMultispectral imageSettore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaDrainage basinVegetationForcing (mathematics)Aridlanguage.human_languageGeographyRemote sensing (archaeology)ClimatologylanguageAridity indexComputers in Earth SciencesSicilianGeneral Environmental Science
researchProduct

Stochastic models for wind speed forecasting

2011

Abstract This paper is concerned with the problem of developing a general class of stochastic models for hourly average wind speed time series. The proposed approach has been applied to the time series recorded during 4 years in two sites of Sicily, a region of Italy, and it has attained valuable results in terms both of modelling and forecasting. Moreover, the 24 h predictions obtained employing only 1-month time series are quite similar to those provided by a feed-forward artificial neural network trained on 2 years data.

Class (computer programming)EngineeringSeries (mathematics)Artificial neural networkMeteorologyRenewable Energy Sustainability and the EnvironmentStochastic modellingbusiness.industryModel selectionSettore FIS/01 - Fisica SperimentaleEnergy Engineering and Power TechnologySettore FIS/03 - Fisica Della MateriaSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Wind speedFuel TechnologyNuclear Energy and EngineeringSpectral analysisbusinessstochastic models time series model selection spectral analysis artificial neural networks wind forecastingAlgorithmEnergy Conversion and Management
researchProduct